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PREFACKE

The aim of this book is to ingtruet through entertain-
nment, The general theory is that a wrong idea may often
be exposed more convincingly by following it to its
absurd conclusion than by merely denouncing the error
and starting again. Thus a number-of by-ways appear

which, it is hoped, may amuse the professional and hely \.)

to tempt back to the subject those who thought they
were loging interest, N
The standard of knowledge expected is quite ele-
mentary; anyone who has studied a littlé{deductive
geometry, algebra, trigonometry and calctlus for a few
years shonld be able to follow mospgf}he exposition
with no trouble. PN
Several of the fallacies are well known, though I have
usnally included these only when I felt that there was

something fresh to add. Thersis not (I hope) mueh of the

) ¢ 3

rather outworn type . = wwdbraulibrary orgin
4 = U
oo
\\.., 2e—1)=10,
L.ox=1=0,
:’:\ 4 o= 1,
"\n
& S 1=0.

I h&y&lso tried to avoid a bright style; the reader should
piljoy these things in his own way.

“\“"My original idea was to give references to the sources
of the fallacies, but I felt, on reflection, that this was to

give them more weight than they could carry. I should,

however, thank the editor of the Mathematical Gazetie
for his ready permission to use many examples which
first appeared there. '

./



8 PREFACE

It was with pleasure that I received the approval of the
Council of the Mathematical Association to arrange for
the Association to receive one half of the royalties from
the sale of this book. I welcome the opportunity to record
my gratitude for much that I have learned and for many
friendships that T have made through the Association, -

I must express my thanks to members (past and: <
present) of the staff of the Cambridge University Prqs\&“,\'
who combined their skill and care withan encouragement
which, in technical jargon, became real and positive. 1
am also indebted for valuable advice from thosm}rhfi read
the manuseript on behalf of the Press, zmdftﬁ’ my son,
who helped me to keep the proofs fbm becoming

unnecessarily fallacious, PN
A\
MNVE. A, MAXWELL
CAMEBRIDGE R
28 April 1958 Ny

WW W dbra{{l‘jb rary.ofg.in

/o

Q)
Ol



CHAPTER I

THE MISTAKE, THE HOWLER
AND THE FALLACY

All mathematicians are wrong at times. In most cases
the error is simply a MISTAKE, of little significance and, A
“one hopes, of even less consequence. Its cause may b,é\“
a momentary aberration, a slip in writing, or the mis-
reading of earlier work. For present purposes 1t~ha.s no
interest and will be ignored. e\

The mowLER in mathematics ig not eady to’ describe,
but the term may be used to denote an exror which leads
innocently to a correct result. By contrast, the Farracy
leads by guile to a wrong but pla,usﬂ;lc; conclusion.

One or two simple examples sl illustrate the use of
these terms. The first is a hawler of a kind that many
people, here and abroad;® might think the British
gystem of units only $60.well deserdipsaulibrary org.in

To make out o bl

o make out 4

\
11b. butté @ 2s. 10d. per 1b.
2l 1b: la,rd @ 10d. per Ib.
3 lQ sugar @ 31d. per Ib.

6,boxes matches @ 7d. per dozen.
\4 packets soap-flakes @ 24d. per packet.
.(.th but an examiner would include four packets of
'\”"isaap—ﬂakes in such an order?)
The solution is
83d. +2s. 1d. +93d. + 33d. + 10d. = 4s. 83d.
One boy, however, avoided the detailed calonlations
and simply added all the prices on the right:
25. 10d. + 10d. 4 33d. + 7d. + 23d. = 4s. 82d.
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The innocence of the pupil and the startling acouracy
of the answer raise the ealculation to the status of howler.

The emphasis of this book is on the fallacy, though
& selection of howlers (leading, sometimes, to curious
generalisations) will be given in the last chapter. Two
synthetic howlers may, however, be added here before
we proceed to the real business:

(i} To prove the formula A
02 —b% = (a—b) (@ +b). N\
Consider the quotient ’ ‘3;:

a?—pe 4D
a—b " '..\.\"

‘Cancel’ an ¢ and a 5:

a¥ — bt A
| 5 L°

and then ‘cancel” the minug ‘info? the rainus:

ikl
ST -
wwrw.d bl'aul.ibraﬂg‘f&‘g_in
The result is AN a+b.

. . wNP8 1g
(ii) 7o m@@y@ and 2.

The gglilféét answers are obtained by cancelling:

::\.:50 gﬁ B 2

O ' #5 " 5
Oand 18_1
™ 64~ 4

\
Consider next a typical fallacy:
To prove that every triangle is i0sceles,

Let ABO (Eg. 1) be a given triangle. Tt is required to
Prove that 4B ig necessarily equal to AC.
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If the internal bisector of the angle 4 meets BC in D,
then, by the angle-bisector theorem,

DE _ DG
AB ALY
Now LADB = LACD+ £CAD
=C+ 44,
Sy
N\

B D > ‘:.‘f 2
Fig. 1
8o that, by the gine rule appﬁgéi:% the triangle ADB,
DB _winBAD
A_Q_ sin 4008 dbraulibrary.org.in
(O _sindd

Y (¥ 1)
Further, _ AADC = LABD+ /BAD

07 =Bri4,
A\ DO sinid
=0 thag- AC " sin (B+34)°
sinid _ sind
B @) TS

N\

"Moreover sin 14 is not zero, since the angle 4 is not zero,

and so sin (0 +14) = sin (B+ 34),
or C+3i4 =B+14,
or o ¢ =8

The triangle is therefore isosceles.
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The analysis of this fallacy may be used to illustrate
standard features which we shall meet often.

To begin with, of course, the actual error must be
detected. (The false step here follows the line

sin (0 +§4) = sin (B4 }4).

Equality of sine need not mean equality of angle.}) But®
this, in & good fallacy, is only a part of the interest, and
the lesser part at that. ™

The second stage is to effect, as it were, a reconciiiation
statement in which (i) the correct deduction isgtbstituted
for the false and, when possible, (if) thé, Biscrepancy

between the wrong and the correct theorems is accounted

for in full. A
Thus the step \ &

- sin(C+34) = $0(B+ 14)
leads not only to the sta@egi’ Eonclusion
O44d = B+ 14,
but also %ﬁ,@@gﬁﬁ%ypr g.in
) "TO+%A = 180°— (B +14)
S ’
or NA+B4C = 1800,

The nebeseity for the angles B, C' to be equal is negatived
by thefact that the sum of the angles 4, B, C is always

W

Z°N N
LQO,?: The error is therefore founc_l and the correct version

. :}%ﬁbstituted.

Tn the work that follows we shall usually begin with
a straightforward statement of the fallacious argument,
following it with an oXposure in which the error is traced
to its most elementary source, It wiil be found that this
Process may lead to an analysis of unexpected depth,

particularly in the first geometrica] fallacy given in the
hext chapter, :
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CHAPTER II

FOUR GEOMETRICAL FALLACIES
ENUNCIATED

There are four well-known fallacies whose statement re- . &\
quires only the familiar theorems of elementary (school- .

boy) geometry. They are propounded without commen\ﬁ ™

in this chapter, the analysis, which becomes very funda.-
mental, being postponed. The reader will doubtless Wish

to detect the errors for himself before procuedmg’ﬁo their
examination in the next chapter,

1. THE FALLACY OF THE ISOSCEI}}S\QTBIAI&TGLE.
To prove that every triongle \$
8 1808celes. WV
GIVEN: A triangle ABO’
(Fig. 2). R\
REQUIRED: To prove that
necessarily, ’\

ABA\@

GONSTRUCTID‘N Let the Fig. 2

internal sg:ctor of the angle

A meet-the perpendicular bisector of BC at 0. Draw
OD /61 ) OR perpendicular to BC, CA, AB respectively.

- 'Qﬁ.ﬁ oF: Since DO = DO
Q DB = DC
LODB = /0DC
. AODB = AODC (SAS)*
. OB = 0C.

* Notation such as SAS is uscd as an abbreviation for ‘having two
sides and the included angle equal’. The symbol = denotescongruence.
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Also A0 = A0,
LRAO = 21040
LARO = 7400
. AARO = A4QO (ASA)
s AR = AQ
and OR = 0Q. R
Hence, in triangles OBR, 000, D
LORB = £0QC = right anjlo,
OB = 0C proved)
OR = 0Q ' (proved)
.. AORB = Aoog;§\"‘ (t. 2, H, §)
‘. BB = QU
Finally, AB \AR+RB
B S 4040 (proved)
Y =40 Q.ED.

www.d bl'aulibral'y.org-in
(2. Tar FAppady or res RienT AxoLs,
- o prove t@t};ery angle is a right angle.
GIVEN: A §quare ABCD and a line BE drawn outwards
from tbe{si;ua.re 80 that L ABE has a given value, as-
edobtuse (Fig. 3). (If the value s acute, take / ABE
tabe its supplement.)

" ;\‘:’R'EQUIRED: To prove that

\

v LABE = aright angle, /

CONSTRUOTION: Let P, § be the middle points of OD,
AB. Take BE oqual in length to a side of the square, and

%et the perpendiculay bisector of DE meet PQ, produced
if necessary, at 0, '
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PROOF: By symmetry, PQ is the perpendicular bisector
of 0D and of AB.
Consider the triangles ORD, ORE:

OR =0R
LORD = LORE  (construction)
RD =RE (construetion) QS
. AORD = AORE. (SASy O\
In particular, 0D = 0F. Y {;}\ )
Ry
D P ¢ \?\\ O

ol
.“Q\
\'\\.a Py
K “: ~ Fig. 8
\NO

Considér the triangles 0Q4, 0QB:
® X
QY oo-o0

(dbraulibrary org.in

:..(?;: . L0QA= 20QB (perpendicular bisector)
O~ Q4 = QB (construction)
. AOQA = AOQB. (SAS)

In particular, 0A =08

and {for Ister reference)
20AR = £0BA,
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Consider the triangles 0AD, OBE:

04 =0B {proved}
AD = BE (BE = side of square)
oD =0F {proved)
. AOAD = AOBE, (S88)
In particular, \
L0AD = LOBE. L\
Now the point 0 on PQ may be either (i) betweenP Q;
(i) at ¢; (iii) beyond Q (as in Fig. 3). Y ~«:
In case (i) +*{
£ABE = /OBE + LOBAC
= LOAD+ 4~%‘B {proved)
= right anglé, “
In case (i) P\
: LABE = LOBE
=\204D (proved)
. ';" LBAD
wwew.dbraulibe ar)&q‘%}ﬂ; angle.
In case (iii) K¢ l\
\XABE = LOBE— /0BA
'..,x " = LOAD— /0A4R (proved)
\ > L= rlght- angle.
{-I"‘nee, m all three cases,
R\ L ABE = one right angle,

[[3 TeE TRaAPEzZIUM Farraoy.

To prove that, if ABOD ig g quadrilateral in which
AB = CD, then ADis necessarily parallel {0 BC.
GIVEN: A quadrilateral 4BCpD (Fig. 4) in which
AB = (D,

FRQUIRED: To prove that AD is parallel to B(!,
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CONSTRUCTION: Draw the perpendicular bisectors of
AD, BC. If they are parallel, the theorem is proved. If
not, let them meet in O, which may be outside (Fig. 4 (i))
or inside (Fig. 4 (ii)} the quadrilateral.

. € 4
@) (i) N
Fig, 4 BLrs 2

PROOF; The perpendicular bisector of a line ig the loous of
points equally distant from its ends. Heq\\se,

0A = 0D \‘

OB = OG’

Compare the triangles OAB, OIDG'
OA““ 0D {proved)
\\0 B = @ dbraulibrar(proge)
«~ 4B =DC ' (given)
st AOAB = 80DC (858)

SO7 o 2048 = coDC.
Also\by isosceles triangles,

LOAD = £0DA, (04 = OD)

~\Hs‘nce by subtraction (Fig. 4.(i)) or addition (Fig. 4 (ii)),
£BAD = £LCDA,

LOBA = 200D (£0AB = A0DO)

and LOBC = £OCE, {OB = 0C)
Hence, by addition, :

Similarly

L ABC = £DCB.

) MF
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o IThus
' LBAD+ LABC = £CDA+ 2DCB.

But the sum of these four angles is four right angles, since
“they are the angles of the quadrilateral A BCD. Hence

LBAD+ LABC = 2 right angles.

Also these are interior angles for the lines AD, BC with |
transversal AB. PR N,

Thus 4D is parallel to BOC. D

2%
< 5%

t4 TeEr Farvracy or rar Empry CIRCLE.

To prove that every poins inside o cireloJits on its cir-
cumference. Y
GIVEN: A circle of centre O and ra,dihjs;f", and an arbitrary
point P inside it (Fig. 5). 4

@ N ’ Fig. 5
:‘.\': $
y*" BEQUIRED: To prove that P lies on the circumference,

CONSTRUCTION: Let § be the point on OP produced
beyond P such that

O_P.OQ = 2,

and let the perpendicular bisector of PQ cut the cirele at
U, V. Denote by R the middle point of PQ,
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PROOT;
OP =0R—-RP
O0Q = OR -+ R
=(0R+RP (RQ = RP, construction)
', OP.0Q = (OR—RP)(OR+RP)
= OR*. RP?
= (OUR~RUH —(PU2—-RI?) (Pytha,gomﬁ‘}
— QU PUR «C\ .
=0P.0Q-PU* (OP.0Q = ‘(Q\» o3
W PU=0 \\ )
. Pisat U, on the cmcu.m@ence.
8}("\
R\ &
\\*
&

www.dbraulibrary.org.in

QO

Re

\%/

\O
OO
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CHAPTER III

DIGRESSION ON ELEMENTARY
GEOMETRY

Elementary geometry is commonly taught in the schools
for two main purposes: to instil a knowledge of thé )\
geometrical figures (triangle, rectangle, circle) nget:‘in ’
common experience, and also to develop their properties
by logical argument proceeding step by ste fom the
most primitive conceptions. The supremeNexponent of
the subject is Euelid, whose authority remained almoss
unchallenged until very recent times. 7>~
It is probable that Euclid’s own ‘sy's\ﬁem of geometry is
not now used in many schools, bt children studying
geometry become fami]iag{%ﬁ‘th a number of the
standard theorems and with the proofs of several of
them. The general idea 6f'a geometrical proof, if not of
the details, willtHbsrBbBspsNiaF% Y anyone likely to read
this book. Wegi e'\l(n lustration atypical example, which
we shall, in faet?fmd it necessary to criticise later. The
proof Wﬂl‘j\ﬁl“ﬁt be stated in standard form, and the
nature }}Qghe geometrical arguments leading towards it
will thefrbe discussed.
N
% To prove that the exterior angle of a triangle is greater
\“than the inferior opposite angles.

\

GIVEN: A triangle ABC whose side BC is produced
beyond C to P (Fig. 6).

REQUIRED: Toprovethat the angle PC 4 is greater than
the angle BAC. o
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CONSTRUCTION: Let O be the middle point of 4, and
produce BO beyond O to D so that 0D = BO.

PROOF: Since 04 =00 (construction)
OB = 0D {construction)
LAOB = /C0D (vertically opposite)
. A4OB = ACOD sag) O
-, 2BAO = 2DCO, <O
that is, /BAC = £ DCA. A\

A D

Flg&

But 2 DCA is part of LPC‘A s0 that

LDCAG A8 Iess tha-nf\aéﬂ{i"airhbt ary.org.in
Hence alse £ 40'13 less than £ PCA,
or LPCA is greater than 2ZBAC.

The essencé 6f this proof {rarely used nowadays)is that
it is en Qta,ted as a necessary consequence of an earlier
theor%in;"namely that two triangles are congruent which
hage" two sides and the included angle equal. This

~ ﬁﬁeorem in its turn, has been proved explicitly from
\ yet eatlier work (as in Euclid’s treatment) or perhaps
enunciated explicitly as one of the foundation stones on
which the fabric of geomstrical argument is to be builé.

In this sort of way a structure is obtained involving
point, line, angle, congruence, parallelism and so on,
each new item being either defined explicitly as it appears
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or derived inductively from first principles or from pro-
ceding theory.

Since Huclid’s time, his system of geometry has been
subjected to very acute scrutiny, and a number of serious
gaps have been revealed. In particular (and this is very
relevant for the next chapter) it appears that he un- .
wittingly made a number of assumptions from the ap-
pearance of his diagrams without realising that (his)
logical foundations were thereby rendered suspects.The
preceding illustration shows this very clearly, {™\

The crumwﬁd{:ﬁé@ﬂfﬁﬁ‘m’éfw &HBre is that the angle
£DOA is partiof.the angle 2 PCA, and this observation

is usually followed in standard texts by the unassailable
remark,, ;" '

',,\{'\‘”but the whole is greater than its part’,
gf&‘lié,t the result follows. There is, however, no step in the

\8rgument whick proves from earlier results which is the

~\\./
X

\

whole and which the part. The only reason for selecting
£PCA as the whole is that it ‘looks like it ’; but whether
it would continue to do so for a triangle of atomic or
astronomic dimensions is g very different matter. The
result may, indeed, be untrue for a triangle drawn on a
sphere (compare Fig. 1), 50 something is involved which

is basically diﬂ'erel_lt for sphere and plane. The immediate
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point, however, is that this step of the argument is
‘diagram’, not logic.

Discussion of all that is involved would carry us far
beyond the present aim. There is a very full treatment of
the subject in Foundations of Euclidean Geometry by
H. G. Yorder (Cambridge University Press, 1927). We
conclude this chapter by giving explicit mention to two
basic geometrical properties not usually considered in {
elementary geometry, namely those covered by the
words between and outside (or inside). These are th,e two
characteristics of figures in space which remain undeﬁned
in the usual treatments, and the logical gaps: Leﬁ\by their
omission are precisely those which are ofteh, “uninten-
tionally, taken overfrom a diagram. The otk of the next
chapter will reveal the damage th&t,\ean be done by

ignoring them, \0
* 3
~< www.dbraulibrary.org.in
)
¢ 2\J
A\
2N/
N
i"\'"
’\\ul
R\

..\‘;;
N/

\

N
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CHAPTER IV

THE ‘ISOSCELES TRIANGLE’ FALLACY
ANALYSED

It is customary to dispose of this fallacy by drawing an
accurate diagram; but analysis by argument is frqig'f%;l,\
and we shall Tet the discussion lead us whither it will,
(i) Note first that the internal bisector of thé angle 4
and the perpendicular bisector of BC both _Pass through
the middle point of the arc BQ opposite to.A of the cir-
cumcircle of the triangle ABC (Fig. 8)>"In the earlier
diagram (Fig. 2, p. 13), 0 was p]aceg@lde (in the normal
intuitive sense of the word) thextriangle; it is now seen
to be outside, though, as We,pciiﬁted out in ch, mmx, this
fact cannot be established by any of the results of ele-
mentary geometry, Wh}'cﬁ‘daes not define the term.

b atlibrary . org.i

Fig. 8 . Fig. o

The removal of O to the outside of the triangle, how-
ever, does not of itgelf expose any fatal error, and wo
must proceed further. The points D, Q, B (Fig. 9) are now
known to be the feet of the perpendiculars on the sides of



THE ‘ISOSCELES TRIANGLE’ FALLACY 25
a triangle from a point O on the circumcircle, Hence, by
the Simson-line property,
D, @, R are collinear.
We therefore appear to have resolved the difficulty,

since, for collinearity to be possible, one of the points
¢, R must lie upon a side of the triangle and the other o™ )

a side produced. Thus (in the figure as drawn) O
AB = AR+RB, O
b AC = 4Q-QC. o)

The equality of AB and AC is thus negabived.

Once again, however, the axiomg\and theorems of
elementary geometry are not suﬂiclent to establish
absolute proof. It is not posslble to prove by them alone
that a straight line cannot cirb (internally} all three sides
of a triangle. The final s%ep requires a supplementary
axiom, enunciated (likeé\the other axioms) from experi-
ence and not from précedmg logig#w-dbraulibrary.org.in

Pascr’s AX}‘O\M A straight line cuiting one side of
a triangle nece&saraly cuts one, and only one, of the other
two sides, ea?cept in the case when it passes through the
opposthv}rtew

Tlie\hne through D therefore meets either AB or AC,
but hot both, and the discussion reaches its close.

“\ The crux of this discussion is that the attempt to argue
\\ 3 solely from the usual axioms and theorems has been
' found inadequate. It is necessary to supplement them

either by reference to a diagram, or by Pasch’s axiom.

But reference to a diagram is unsatisfactory; it is hard

enough in any case to be sure that possible alternatives

have been excluded, and, even more sericusly, there
remains the criticism that something outside the logical
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strusture has been called in to bolster it up. This, in a
deliberately self-contained system like Euclidean geo-
metry, cannot be allowed.

(i) The introduction of trigonometry seems to give
some sort of an answer to the problem, and is of interest.

Since LOCA = O+34,
application of the ‘afsin 4 = 2R’ formula to the triapgjé">
OOA glveﬂ OA . B 2R (Q":“\uo
sin (O'+34) ~ 77 ,\\ ’
where B is the radius of the eircumeircleofthe triangle
ABC, Thus AN
AQ = AR = Odcosid S\~
= 2Rsin (O 4) cos 4
= RS{C+ 4) + sin C}

= Ii’{éinB—i— sin C}
www.gl?f?ﬁi%}{ﬂﬂﬂilgm— 2R Si!lO}
SN =i+,

Hence ()" AB— AR =c—4{b+e)
N

’\‘ = ’%(G_b)’
f..{l&\ AC—~AQ =b—}(b+o)
O = $(b—0),

80 that one of these quantities is positive and the other ig
negative; that is, one of the points @, R lies on a side of
the triangle and the other lies on a sids produced—all
without Paseh’s axiom or any equivalent discussion.

The objection to thig treatment lies concealed in the

ste .
"eP 28in (C+34) ¢os 34 = sin (C'+ 4) -+ sin 0,

O\



THE ‘ISOSCELES TRIANGLE® FALLACY 2Y

since the proof of this formula involves ultimately the
earlier formula ‘sin (4 +B) = sin 4 cos B+-cos A sin B’,
and, through it, an appeal to a diagram to settle sense
(positive or negative). A proof somewhat more exciting
and illominating than the standard one can be given by
transferring the argument to Ptolemy s theorem, asin the
next section.
(i1i) Let PQ be a diameter of a circle of radius a angd \

centre O (Fig. 10). Take points M, NV on opposite s1deﬁbf
PQ so that (assuming the angles to be acute) ¢ ""g

LQPM =4, QPN =B. "

irwdbraulibrary . org.in

\\ Q.t: N

O\ Fig. 10
Then \v} L MON = 2(4+B).
NK WYY PM =2acosd, QM= 2asind,
”;.' : PN =2gcosB, QN =2qsinB,
O MN - 2(3MN) = 2{asin(4 + B)}
A = 2asin (4 4 B).
But, by the theorem of Ptolemy,

PQ.MN =QM PN+PM QN,
so that

4g2gin (4 + B) = 44?sin A cos B+ 4a? cos A sin B,
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or 8in (A + B) = gin 4 cos B + cos 4 gin B.

This seems to establish the basic theorem authorising
the step

2ain(U+44)cos 34 =sin (C+ 4)+ sin ¢

in the preceding discussion.
We now give further attention to the theorem o
Ptolemy. It can be restated in the form: (M

If 4, B, C, D are four concyclic points and if the fhree
products N
BC.AD, CA.BD, AB.CD [/

are formed, then the sum of two of them is egu&l to the third.

The difficulty confronting us is to decide which is ‘the
third’. The usual method is to say tHat” the third’ is the
produet of the two diagonals of the cyclic quadrilateral
whose vertices are 4, B, O, D, but this is precisely the
appeal to diagram that we geék'to avoid. There are other-
wise three distinet possibiliﬁes:

v Gh oAb B G = BC.AD,
B.6D+B0.AD = 0A4.BD,
K EBC.AD—!—OA.BD = AB.CD,

and, for ’é?njr given configuration, the criterion is the

diagtg.n}."Without it we cannot tell which of the alter-
natives to select.

A\ A proof of Ptolemy’s theorem itself may he developed

y by a trigonometrical argument which leads directly to

this dilemma, Let 4, B, ¢, D be any four points on a
circle of centre 0 and radius o {Fig. 11). Imagine a radius
vector to rotate about O from the injtia] position 0D in
the counterclockwise sense, passing through A after an
angle o, B after an angle 4, and C after an angle v, where
a, B, v are unequal, and all between 0 and 27. It is not
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at present known in what order the points lie round the
circle. Then, whether the angles «, £, ¥ are acute, obtuse
or reflex, it is true that

AD = 2asin a,
BD = 2asin}f,
C'D = 2asin }y. D

Also
BC = 2asin 3 -],

CA = 2asin}|y—al,

c

AB = 2&18].11%] —ﬂl Fig. u'\\
where, for example, |§—v| means the numéﬂcal value
of (~7).

PN
Now it is easy to establish by d.ﬁ'ebt expansion the
identity \

sin 4o sin 3{(F — y)+sm§-ﬂam§(y. a)
+am§ysm:}(a £ =0,

and the point to be made is thaﬁ"fﬁ'ﬁ SRPLEtIeRbi ebiRrs
the three possible cqae\ of the theorem of Plolemy for four
concylic poinis A\\B’ C, D

Of the three unequal angles a, f, y, one must be
1ntermedm1se ‘in value between the other two; suppose
that tius\ls a. Then either

O
EQ\ Bra>y,
thhat
Byl =p=r. ly-al=a-y, |a—pl=
and the identity is

sin 4o sin 4| —y| —sin §fsin }|y — |
— siniysindla—p| =,
or AD.BC = BD.CA+CD.AB,
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which is Ptolemy’s theorem when AD, BC are the
diagonals; or
(i1}
8o that
B=¥l=7=F ly—ol=y-0o, |a—fl=a-4,
leading to the same relation
AD.BC = BD.CA+CD.AB.
When # is the intermediate angle the rel ation iy
| BD.CA = CD.AB+AD.BC
and when v is the intermediate angle the réia}ion i8
CD.AB = AD.BC + BDCA.
The three ‘Ptolemy’ possibilities‘are thus obtained,

FALLACIES IN MATHEMATICS

y>o>f,

. N

T\
S\
N/

"~ theconceptofdiagonalsfor the quadrangle being replaced

by that of befween-ness for theangles «, B

The point can be further emphasised by a more
advanced argument from analytical geometry. Let the
rectamgularwga\:}ttﬁﬁl%iiﬁgﬁ%dg}gﬁ of 4, B, 0, D be
(xla yl)’ (xzs y2)’. (xéa.ys): (x-.t: y4}! respectively, and denote
by I;; the digtance between the points (@i ¥1)s (5 Yy)e
Consider the'product of two determinants:

A\

P -2 =2y 1
-2z, -2y, 1
\ -2z, — 2y, 1
=2, =2, 1
1 1 1 1
xl T, 2y X,
x
41 Ya Y Ya

i+ 23+l al+yl adtyl
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On multiplication according to the ‘matrix’ rule the
element in the ¢th row and jth column is

(@3 +43) — 22,5 — 2y, + (25 +4)),

or (@22 + (g~ 45)%
or i ~
Hence the product is \
oom B B, PR,
(B 0 B, B, A\
N
B B 0 &, '\\
M B B O

This determinant may be evaluated by,direct computa-
tion. Alternatively, write SV

2 78 e J2 72— AT — 78 — B

_323 =lh=f Bi=lh=g3\)>0=1=%
TR Y

2 72 _J. 72 7% e J2 73

h=l=b By=Sm Bo=UH=mn

and replace zeros tempor&?iiﬁ' by the letters a, b, c.

Then the determinan&{s www.dbraulibrary.org.in
cfw nog ot
L\
N R b f om
Y% g f ¢ nl
PAY,
A& I m n O

Whj,q"{h\,é'quated to zerc, may be recognised as giving the
j\c{z‘zgential eguation of the conic

Q ax® + by + e2® + 2fyz + 2gzx - 2hay = 0,
namely

AR+ Bm2 4+ On 4+ 2Fmn + 260l 4 2Hln = 0,
where A=be—-f2, F=gh—af,
or (with e, b, ¢ returned to zero)
—f22 — g2 — h2n® + Zghimn + 2hfnl + 2fghn = 0.
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Further, the value of the determinant, is indeed zero if
A, B, C, D are taken to be coneyclic, the condition for this

heitg A

R A

wgryy &y Yy L

Gret o oy 1 O
(This is found by substituting the coordjnfj,péé\ oi:
4, B, €, D in the standard equation "G

22424 290+ 2fy+c =0 'm:\" '
for a circle, and then eliminating detsrmma.nta,]ly the
ratios 9 0f0) £i0Y
1.29.2f.c.)~“x\‘. |
The condition for the four points'to be concyelic is thus
FH+ g + B — 2ghin 2hful — 2fglm = 0,
or & (D) £ ) £ /() = 0,
(Thisisa WB].],JQ’I.OWII'fOll;‘]:'ﬁ‘ll[& for the tangential equation
ofa conicthrgﬁﬂg\fggﬁg?el iced d?t%é%riangle of reference.)
In terms of %,i}fshe condition is

\’—F. \7(3333%4) + 1./(331334) * \j(lleg-;) = 0,

or \ Tl g loy + Laly, = 0.
T’l\\'\é’@‘fées the three distinct possibilities
% \ landog +lialsg = Lyglis,

'S

N oo
h
\:

balss +loglia = Iy oy

boalig Ui loy = linly,

remembering that the distances are positive so that the
three alternative signs cannot be all alike.

We have therefore recovered the thres relations given

on p. 28, and this i all that can be done without further
information about relative positions round the circle.
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CHAPTER V

THE OTHER GEOMETRICAL
FALLACIES ANALYSED

Tae Farraoy orF THE RicHT ANGLE. Here
again a proof of the point at which fallacy intrudes leads{ )\
to considerations of some depth. We seek as g prelifn: ’
Inary step an alternative interpretation for the pqsn‘qon
of the point O (p. 14).

We have secen that PO, RO are the perpgndmular
bisectors of D, DE, and so O is the circumdcentre of the
triangle CDE. Hence O lies also on thé)perpendicular
bisector of C'A. O

But, by construction, BC = BE so “that the perpendl-
cular bisector of CF also passes through B. Moreover,
and this cannot be proved by the usual axioms and
theorems alone, this line i ‘the mterq%l b]lsggggr gf t[}r]ie
angle /CBE. Thus OB passes down the internal 1sect0r
of the angle 2. OB ssothat the angle £ OBE isreflex, being
equal to the sum of two right angles plus 1 ZCBE. The
triangle OBE is'therefore so placed that OF is on the side
of B remq@ “from the rest of the figure. The step

\\"‘ /ABE = /OBE+ /OBA

is ,@fiérefore illegitimate,

2\ Note that the exposure of the fallacy has involved
arguments not supported by the usual axioms and
theorems. It has been hecessary to consider the internal
bisector of an angle; and ideas of inside and outside appear
in Euclid by reference to diagrams and not by reason only,
ag we have already suggested in ch. mm.

. MF
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Tee TRAPEZIUM FALLACY. The argument here is un-
expectedly close to that of the preceding Fallacy. It is,
of course, perfectly possible for the result to be true; we
are interested only in the cases where it is not. In such
a cagse, draw the line through B parallel to A.D (Fig. 12).
Let the circle with centre D and radius 48 = CD meet .
this line in F and in & (where @, not shown in the dia-\
gram, is the point such that ABGD is a pa,rallelogram.)\’
with DF not parallel to AB.

0 N

# ‘{"
S\

\,,.

N ' ) M
Ww ,d(f'“auljbl ary.org.in
Rl i”‘:' £ ¥
JL"\NJ\I \
N N i
\ Fig. 12
Thﬁ‘l b‘y symmetry {or by easy argument} O} is also

t eperpendicular bisector of BF; and ON is the perpendi-
bisector of BC. Hence O is the circumecentre of the

.f',’mangleBOF so that, asin the preceding Fallacy, OD lies
’ along the internal bisector of the angle CDF, and the

exposure follows as before.
Tae Farracy or 18R EM?PTY CIROLE. The fa,lla,cy
is most convincingly exposed by algebra. Let
OP = p,
50 that 0Q = »¥p.
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Now (r—p) >0,
since the left-hand side is a perfect square. Hence
—2rp+p* >0,
or P43 > 2rp,

or (dividing by the positive number 2p)

Hp+rip) > r.
Hence OR > r, O\

&

that is, the point R lies oufside the circle, and so the* -
points I/, ¥ do not exist and no calculations can be ma,de
involving them.

The result is, however, startling when a.pproa\hed with
the technique of coordinate geometry. Takeé OP to be the
x-axis and the line through O perpend,idlﬁﬁr to OP to be
the y-axis. Then Pis the point (p, 0), Qléflie point (r3/p, 0)
and R is the point {3(+2/p + p), 0}

The circle is wR g = 2]
and this cuts the line through R perpendicular to OP,
that is, the line 2,8 g(?‘zlp Yy dbraulibrary.org.in
where Y10 p+p)?
= —r¥p-p)*

In a real gléémetry no such value of y exists and the
&rgument\stops We therefore continue it in complex
Ocme%ah geometry. Then

y= +i(r*p—p),
. where = 4/(—1}. Thus the complex perpendicular bi-

\ )sector of P@ cuts the complex circle in two points, of
which a typical one is

U0%p +p), ity —p)}.
Now apply the formula,

= (@, — )+ (1 — ¢p)*
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to calculate the distance PU. Thus
PU* = {§{r*[p +p)—pP +{}i(*/p—p) - O}
= §(r*/p—p)* + 3%/ — p)?
= rip—2)* (1 +43)
=0,
80 that the distance between P and U is zero. n o
(This is less odd, however, than it sounds, for ib' ;:leﬁm\
pends to a large extent on the transference of the word
‘distance’ to this context.) R !
The circle of centre P and passing through ¥'is thus
given by the equation \’

(—pP+y2 =0, N

PAL

and this meets the given circle o

N\

N\

2442 =.jri~«'
on their radical axig Q \\
{—p)+y3 S+ y2 -2 — o,
or www.dbr ﬁ)*a?ir—f&?%ﬁl 0’
or A2 =1 p+p),

which ig precisel}\the line UV already considered.

Thus thgr\é}nﬁa two points on the circie whose distance
from P :i;{:complex Cartesian geometry is zero. They are,
howeyer;/quite distinet from P.

Corollary : given any eircle and any point in its plane,
there exist in complex Cartesian geomelry fwo points on the

Cbircle whose distance Jrom that point is zero, where distance
* is defined by the formula

a* = (2, &)+ (3, ~ ¥2)
Note that this corollary, as stated, is not a fallacy, but

is inherent in the definition of distance for complex
geometry,
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CHAPTER VI

SOME FALLACIES IN ALGEBRA

AND TRIGONOMETRY
We gather together here some fallacies based on a dis- <>
regard of the more elementary rules of algebraic and“ ¢
trigonometric manipulation. As the reader may pre{e,r
not to have the exposure immediately beside the f&llacy
itself, we reserve the comment (here and in later faIl&cles}
till the end of the chapter. w\\

\.

I. Tur FALLAGIES‘\\“

(1. THE FALLACY THAT 4 = 0 )
Since coalx=1 —»smﬁ
it follows that \*3.

=T% (1 —gsin? )}
1+ GOBQT T (1 ws\?\‘rndb?‘)auhbl ary.org.in
or, squaring each md@,
(Lot B82)? = {1+ (1—sin? )2,
In partiqula®; when 2 = 7,

\’\ (1-1)2={1+(1-0,

‘\w _ 5
01:}‘\\ 0=(1+1)
') =4
N (2. Tax Farracy tHAT +1 = —1.
Since 1= 41

= J-D(-1)
= J(=Df(-1),
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it follows, writing ./(— 1) = 4, that

The two fallacies which follow are somewhat similar « N
at the eritical point. It is perhaps worth while to 1nclude~\~

both for the sake of the geometry with which they, a.;'e ”
clothed. . \

N
(3. Ter FALLACY THAT ALL LENGQHB ARE
EQUAL. AS
GIVEN: 4, ¢, D, B are four points in ordér'on a straight
line. \ O
REQUIRED: To prove that AC =\BD), necessarily.
conNsTRUCTION (Fig. 13): Let)0 be one of the points of
intersection of the perpendieular bisector of C'D with the
cirele of centre 4 and rad‘gm,j (4C.ABR), so that

W W ,dbwb iaﬁycplﬁﬁj

Fig. 13

PROOF: Since AO® = AC'. AB, theline AQ is the tangent
at O to the circle OC'B,

. LAOC = /CBO
=0, say.

-~
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Since OC =0D
£0CD = LODC
=a, say,
. LOAC =a— 2 =£BOD
| =g, say. A
Write Od =a, OB=8; AC=wu, BD=v, (D =1w;, |
OC = 0D = k. D
From A0ACQ, O
a? = B2+ ud + 2kucosa. '\‘
From AOBD, (¥
NS
b=+ ot 2kweosa. N\
Hence (a2 — k2 —u?)v = 2kuv cony cu\\:
= (b kﬂ\ —v?) u,
so that (B + vt u—(k*+ u%)v = bPu—ady,
or . (w—v) (k2 fmz)“— bu—ay,
or A bzu w@dndbraulibrary.org.in
AT Ew

Now the tnar@‘es 0A4C, BOD are similar, so that
Q) a*  ACAC  AC w

N

(" B ABOD BD w

:?;w
s
Herea. Pu—a?o =10
™
QN Joou—p =0,
~ e
\\, “or %= v
4

(4. Tre Farnacy THAT EvERY TRIANGLE I8
. IsosozLEs.
GIVEN: A triangle ABC.

REQUIRED: To prove that AB = AC, necessarily.
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CONSTRUCTION: Draw the bisector of the angle A to
meet BC at D, and produce AD to P so that

AD.DP = BD ., DC
(Fig. 14),
PROOF: For convenience of notation, write 4B = o,
AC=b, BD=wu, CD=v, 4D =2, PD = ¥, PB=r,
PC=gq, +PDB=20. The definition of P gives the

relation O
Xy = uv. N\
4

N\

‘,‘ Fig. 14

;"\}' £LADC = £ BDP
NS \
QN 4D  BD .
"\.:; C = Dp- (contruction)
\/ . The triangles are similar (2 sides about equal angles
proportlona,l) . 4D DC AC
" BD” DPT BP’

or
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Similarly the triangles A DR, CDP are similar, and

o u 4]
vy Ty
In particular, re_ b ,f,
vy rg
or uvgr = bey®.
Now the length of the bisector AD is given by the\
standard theorem K b
AB.AC = AD*+BD.DC A0
*. be = 2% uw. \:w:\'\ >
Hence wvgr = a2y + upy? ‘ \/
= ufy? +uvy2j\‘2\

. gr= m}+y2
Also, from the trla,ngle PBD "
=ul+ y2\~— Zuy cos &,
and, from the tnangle POT} www .dbraulibrary.org.in
gt ﬂba+yﬂ+2vycost9
Multiply these ecy\}blons by v, u, respectively, and add:
‘@?;“rugﬂ = uv(u+v) +y*(w+v)

7 = (u-+v) (ur+ %)
”\‘~
’\\i”; = (u + ‘U) qr,
N .
byrthe previous result.

d (OLetus now rearrange this relation to give the ratio u/v:
v ulg?~gr) = olgr %),
w_gr—r® _r(g—7)
v ¢-gr qlg-7)

or

N\
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DE_PE
DC — PC’
80 that P.D bisects the angle BPC.
Finally, compare the triangles APB, 4 PC:
AP = AP,
LBAP = /0AP (construction), *
LAPB = / APC {pro\’ "
. AAPR = AAPC. TASA)
In particular, AB = AC. AR

That is,

(5 TEE FALLACY THAT +1 = b
Do solve the equation cot 0 +tan {3\ 0.

cot6+tan(0+26) oy

ta.n8+ta.n20
I— ¢ t&nﬁtan 28

. cotf— tacn29+tan9+ta.n29=0

W db\auhb ary.org.in

\ Soeotf+tanf = 0
XN tan@41 =0

Pt
£ )
N/

oot 84—

Ltan?d = —1
N
,'\w . tanf = +i (t=4(-1)).

Bx(h};here are genuine values* for ¢, in the form

\\ . d= l:rr+ tnm (n integer),

* tan 38 = —ecot
= tan (84 inm)
30 = 84wt a
& = drgnar,
For example, tan $7 = — cot }u.
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Thus, with, say, 6 = im,
tan?lmr = —1
+1= -1

(6. Ter Farracy TEAT EVERY ANGLE I8 A
MuvrrirrLeE oF Two R1GHT ANGLES.
Let 6 be an angle (complex) satisfying the relation

tanf =g, - O
Then, if 4 is any angle, ,\u.‘;’
tan A +tan § K2, \
ta-n (_A. +6) — mm \.\:\\\'
tand 43 \}
- 7o\
l1—itan A
=i P\
= tm;iﬂ."
Thus tan (4 -|-5‘J L tan®,
WOWW dbrauhbl ary.org.in
g0 that ‘ A{kﬁ = na+0,
or - \J 4 — nrx

for any angle 4w

» N\ ¥
{7 THE\‘EALLACY THAT 7 = (.
Si v 2ari ; g
"™ = cog 27 -4 8in 27
P\
" =1,
*\)it,follows that, for any value of 2,
\/
¢ = iz gt . pilet2n)
Raise each side to the power i:
(e'ix)'i — (e€(m+2rr))i,

.or g% = g{x+2n),
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Multiply each side by e*+%7, which cannot be zero for any
value of . Then ¢ — 1

so that 27 = 0.

(8 Tuer Farvraoy THAT THE SUM OF THE
SQUARES oN Two SipEs oF A TRIANGLE IS . &\
NEVER LESS THAN THE SQUARE ON THEA .

¢\

THIRD, S

GIVEN: A triangle 4 BC so named that “3,:‘“\'
| a > b. ' “z\:‘ ’

REQUIRED: To prove that a®+52 > 2, nesgmsarily.

PROOF: Since a8 :\\“

it follows that acos C > beog O"

But, by standard formula, 2\

L g

R

<

o= bcosG+ccos{3’u.};’.:". boosO =a—coos B,
b= acmw@ﬁlgra\@m;rwpl‘@éos 0 =b—ccos A,
Hence \'\})iccosA >a-—-ccos BB
So600s B—ceosd > n—b.

A%/
Multiply,\éa,ch side by 2ab and use the cosine formula.

\\*I:\e"a(aﬂ+q2—b2)—a(b2+c2—~a2) > 2ab{a—b)
'\.f.;’o\ S =02 —ah+ab? > c2(a—b),
Q~ o (a~b) (82 +5%) > o¥(a—b),

St b2 s e?,
division by & —b being legitimate since g — & > 0.
ILLUSTRATION. Consider the particular case
@=4, b=3, ¢=86.
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This triangle exists, since
btre>a, c+a>bh atbse.
But a4+ 52 = 25, ¢f = 36,

Hence, by the theorem,
25 > 36,

II. THE COMMENTARY

Farracims 1 axo 2. \
These are both based on the ambiguity of sign, Which
arises whenever square roots are taken. An egh@tion
22 = gt
has two solutions, ' o\
r=+a, == —a,\*

and care must always be taken to delect; the appropriate
one. It is not necessarily true that both solutions are
relevant in the problem glvmg Tise to the equation, and
it Is always essential to cheek indepe

Thig phenomenon i {well knox\v;; f% ttghg;éey of ptile
solution of equati mvolvmg surds. Such equations
can, indeed, be s ted to give an elementary form of
fallacy: ¢

To prov tkat 1=3,

Cons;dq he equation

O J(B—a) = 1+ Jz.
S;;tuare each side:
w4 0—3’=1+2:Jx+x’
or 4— 2 = 2/,
or 2—x = \/.?}

Square each side: 4-—dr+22 =g,

or x2—5m+4.=0,
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or (x—4) (x—.]) = 0,
50 that z=4orl,
Inparticular, the value x = 4 gives, on substitution in the
given equation, JE—4) = 144,
or 1=1+2
= 3,

The fact is that the whole of the argument has moxe?.f
in one direction only, and thers are several pomt.-;; where
it cannot be reversed. The step P\

S—2=142/x+2? "‘\ ]

is a consequence not only of the glven eqyatxon but also

of the distinet equation &
_ —\B—z)=1 +\{w

We have in effoct solved four equatlons,
/(5 —-:es) =144z,

and each of the two pl'ospectlve solutions must be
checked aga&fﬁﬁ‘ftﬁ%‘\é'q'&ﬁ,ﬁbﬁ Fo8dB1ly proposed.

The followmg\gynthetlc example of false square roots
affords a,nothet‘ texceedingly simple illustration :

By duect\c()mputatmn of each side,

O 994 = 2540,
Ad@& to each side:
R 9—24+16 = 25— 40+16
~O° B4y = (5ap,
N/ Take squareroots: . g . 54
Hence 3 = b.

With these remarks in mind, the reader should have
no difficulty in disposing of Fallacy 1. The second one is,
however, worthy of further comment,
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The steps 1=41
=J{(—1) (-1}

are correct. The following step -

V(=D (=1} = J(-1)J(-1)
may be regarded as correct, but it needs care in inter-
pretation. The next step

=D (~1) =142 \o\“.\

is definitely wrong, for each of the square roots W L)
and ./ — 1) has, in the first instance, two posmble~values,
and the ambiguities cannot be resolved without £z ference to
the rest of the problem. If the symbol ¢ is\used for, say,
the first square root, thenitisin the nature of the problem
that the second square root is necesa@mly —1.

This may be made clearer hy examination of the
exponential forms of the square roots. It is well known
that, if # is any integer, \\ _

ed+ammi — oos (332n) 7 +isin (3 +20) 7

- c{ﬁ %ﬂ__i_%Slnwﬁrw_dbraulibl'ary.org.in
Sl
and that, if m ig any integer, then, similarly,
L

JES m\pﬁrtmula.r wo use the identification {withn = 0)

o\\“ 3 = e'}ﬂ'&
than the argument is
~'\.' 1=J(=1y(-1)
N = etix (1),

and it is at once evident that the disputed square root is
et or —i, in agreement with the formula
1 =g
= ghnig—dmi,
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FALLACIES 3 AND 4.

The resolution of these fallacies depends on the illegiti-
mate step usually referred to as division by zero, 1t is
usually true that, if am = an,

then m=mn;
but this need not be so if ¢ is zero. For oxample, R
A\
0.5=10.3, N
but 5#3, N

The division of each side of the equation b(@ 18 pi‘oper if,
and only if, g is not zero. 8

There is an alternative way of regarding this process
which is perhaps more signjﬁcant:;%ve may call it the
method of the false factor. The elaion

am, ;‘d‘l;?,
may be expressed in f@@fé&ﬁ"%d form
_ X ’Eﬁ(m—n) =0,

from which it f WA HE GRS Wast of @, m — 1 is zero.
If, therefore; sfsis"not zero, then m — » must be.

The poing Is that the reader is presented with two
factors ghd’ then subjected to pressure to accept the
Wwrong\ohe.

There is a crude type of fallacy based on division by zero,
X .zs'c?f which the following example is typical:
N v Let @ =2,
\ )" Multiply each side by x—1:
2’ = 22,
Subtract 2 from each side:
222y — 22,
Divide each side by 2—2:
r=1,
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But it is given that z = 2. Hence
2=1.

The foreed insertion of the factor z— 1 is, however, very
artificial. In the given fallacies the alternative factor ariges in
its own right out of the geometry and must be accounted for.

Note that the extraction of square roots referred to O
above ig itself a particular case of false factors; for the, Ay

equation e\
1 x? = gt  \J

may be written (- a)(z+a) = 0, ) "f R
and here again the wrong factor is msinuaﬁe&}}nto the
argument. \

Having these ideas in mind we turn'\tgﬁ‘allacy 3. We
reached correctly the step Q)

(v —2) (b2 —aw) —_—.ﬁ‘&u”_ av,
and later the equally corregt,:éﬁ’él;
: bﬁw—‘{;'ﬁ; —u0yw.dbraulibrary org.in
Hence it is true that \}\”\ '
o o) (=) = 0,

The reader weg then presented with the relation
x>

£

¢ ”\.Q v
but th@itemative
R\

N

u—v =0,
Bewy=0

o"a{’lé\errequired consideration. Now the triangles 040,
BOD are gimilar, so that

00 _AC

BD ™ 0D’

k—_
Or ;—k.
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The relation B-uw=20
is therefore true always, so that the deduetion

w—v =20
cannot be made.

The reader interested in geometry will notice that the ™\

relation

k= ¢ \:\'
is an extension of a well-known result of elem@ﬁtary
geometry. If £ AOB is a right angle, them@ and D
coincide at the foot of the altitude from O “a,qd

OC? = 0D = 0A.CB.
\J

D .
The figure under consideration is, ﬁjﬂ'{f&@ speak, a ‘widen-
ing out’ of the more familiar one,\’

The algebra in Fallacy 4 i&’sﬁrprisingly similar to that
of number 3, but the under‘}ymg geometry has an interest
of its own. The step _

WWWL d%@gllbra &or “." r’“’)

is correct, a,ndﬁ“e\ttds to the factorised form

%

‘\"',.x (ug—vr)(g—r) =0,
from :v'hmh attention was drawn to the factor ug —wr.
The possibility g —r = 0 must, however, be considered
too Now the relation
XY = uv
leads to the result that the quadrilateral A BPC is cyclie,
so that, since ZBAP = /£ (4P, we have
BP =(P.

Hence, necessarily,
g—r =0,

and the deduction #g—»r = 0 is thus inadmissible.
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We may now examine the basic geometry behind this
algebraic fagade. The primary and standard theorem is
that, if the internal bisector of the angle BAC of a triangle
wieets the base in D, then

AB.AC = AD?+ BD.DC.

The problem (which we applied to the triangle PEC) is to Q
determine whether the conwerse is also true, that the
existence of a point D for which the above relation holds, ™
necessarily implies that 4D bisects the angle 4, The
answer is that in gemeral it does, but the argflrﬁbnt
breaks down if the triangle 4BC is isoacélés with

AB = AC. In the latter case the relationholds for all
positions of .D on B(C. By ignoring thesfact that the
triangle PB( is isosceles, we obtained PD as the angle
bisector, leading at once to the fallapy.

FALLACIES 5 AND 6. 8\

These two fallacies aresaifpilar in essential point, but
it is interesting to reroark that iy R EH R GrB40 as
an attempt to solvé%-e given equation by a perfectly
reasonable method. One suspects that the trap is one
that might deeeive many experienced mathematicians.

Suppoge:ﬁﬁat any number k, real or complex, is given.
Then, }Kith“proper definition of complex circular fune-
tions,itds always possible to solve the equation

R\ tana =k,
\‘;", . sinx=cosx= 1
since then 2 1 T «/ EeCE

There is, however, one case of exception, namely that
which arises when Bil=0

or k= +1.
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Thus no (complex) angle exists whose tangent has either
of the values +1,

Fallacy 6 therefore collapses compietely, since tho
engle § is non-existent, and Fallacy 5 must have an
omission at some stage, since the step

tan?f 41 =0
is excluded.

The omission is one that might easily pass detg ti‘orn
were it not for the fallacy to which it leads. Thqre~is in
fact a solution 6 = 17, so that 26 = im; and tan*?t?"has no
value {or, as is sometimes said, is 1nﬁmtel{]?he pheno-
menon may be exhibited more easily by taking the

equation in its ‘inverse’ form N
$

ot = — t»a.:r;}‘%\ﬂ

.. tang ﬁw-eot 36

.
's

ta.qf? % cot 36 = 0,
This gives
vy db"?“&lzﬁf Bt 1
tagr P+ FeotOfeotzl =
.\\.. cotf+co
1 Ptand oot 20 +cot f cot 26— 1 = 0,

.s\l

80 tha,t\ 4 cot 28 (tan 6 + cot 8) = 0.

Sl\x tan &+ oot @ # 0, the solution is

‘n\’é
\W\ cot 20 = 0,
or 20 = Lo 4 na,
or 6 = {m+inm.

The zero value of cot 26 corresponds to the ‘infinite’
value of tan 26,

N
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Farracy 7.

This fallacy reinforces the lesson of Fallacies 1, 2, that
unless # is an integer (positive or negative), then the
power

wﬂ.
is a many-valued function; the particular value must
therefore be defined explicitly when this becomes neces- .
sary. Thus the step )
EiT = plla-+2n) N

\

18 correct, but examination is required when ralslhg
either side to power ¢. Since A

eir = gilw+2pn) integral),
(p integr }\

the function (efw)i R \ >
has the infinite set of values ' v

e~ e~ (p — _ 2;.’;}1’ 0,1,2,..).
The funetion (et'(al'+3n))1,

www.dbraulibrary org.in

has similarly the mﬁmt@ sot of values

glmtem e-za*\\(q =..,~-2-1,012,..).
When the valges"of P, ¢ are chosen correctly the paradox
dlsa,ppea,rs ‘The most obvious choice is p =0, g = —1,
glwng\mpeecabiy,

% = g lotlm gtn,
AN
'”\I‘ALLAOY 8.

Everybody who devotes any time at all to the subject
knows that he must exercise the greatest care when
multiplying the two sides of an inequality by some given .
number. For example, it is true that

5 >4,
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but not necessarily true that

ba > 4a.
If a = 3, the relation is
15 > 12,
which is correct; if @ = — 3, the relation is I\
~15 > —12, "\t.\f

which is not correct. Itisnecessary to make sure that the

multiplier is positive. %)
Mostinequality fallacies are based, rather te iously, on
this principle, but one example ought to bédnctuded in
the collection. The present i]]ustra.t-ion’k{' at any rate
the virtue of emphasising, what is Wello\kﬁb'wn otherwise,
that a®+3? is greater than ¢2 when'\lie angle € is acute

and less than ¢ when ¢ is obtuge.\.)
™

www.d"t’)'{a\llibral'y_org_in

¢ ’\.}
§
A\
LD
Py d
PN\
N
~O
\4
”
O
R\
NN
N

2\ w4

N/
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CHAPTER VII

FALLACIES IN DIFFERENTIATION

The following fallacies illustrate one or two points of
danger in the use of the differential calculus. As before,
comments are given in the later part of this chapter. .
I. ThE FALLACIES . O
(1. TE® FALLACY THAT THERE IS NO Pﬂ:TI’NT
ON THE CIRCUMFERENCE OF 4 CIROLE Nim;rLREST
TO A POINT INSIDE IT. ~
Choose the given inside point as thejorigin O of
Cartesian coordinates and the z-axis.ds“he line joining
O to the centre . Lot the coorditistes of ¢ then be
(2, 0) and the radius b, so that the’gciﬁation of the circle is

(z—a) k= B2,
or 22+ y? -~21££:‘I:-l'- ot v dhyaulibrary org.in

The distance from 0{0?‘1;}19 point P(z, ¥) of the circle is 7,

where . 2= 2 +y

g0 that, smca\P is on the circle,
‘\ 12 = 20— a? - b2,

Théxilst&nce OP is least, or greatest, at points for

ﬁin h dr _ 0. But, differentiating the relation for r2, we

dx

\ ‘have dr

r &-2_7 =
Now ris not zero or ‘infinity’, and this equation can only

be satisfied when g = 0 if ¢ = 0, that is, if O is at the
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centre of the circle—in which case all points of the cir-
cumference, being at constant distance from 0, are alike
nearest t0 it and furthest from it.

If, as is true in general, g is not zero, then there is no
point on the circumference whose distance from 0 ig
either a maximum or a minimum.

(2. TEEFannLacY oF THE RADIUS 0F 4 CIRQ{;‘]{.'
T'o prove that the radius of & etrele is indeterminage,N
The working is based on the standard formuld, .~

p=rs ’\:’\ |
dp O

for the radius of curvature of a plane curyb, where ris the

distance of the point P of the curvedffom an origin O and

pisthelength of the perpendicq]ajnfrom O on the tangent.

at P (Fig. 15).

A
O
md ) For a circle, take the origin at the centre, and let the
N/ radius (for any ope determination of it) be denoted by .
Then r = p = & for all Ppositions of P. Hence p, r are
connected by the relation

™

Fig. 15

km:_rﬂ — pm-m

for any values of m and 5.
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Take ]ogémithms:
mlogk+nlogr = (m+n)logp.
Differentiate with respect to p:
nodr m+n

L
rdp o p A
2
s0 that I _min N
dp n 'p N\
« \J
=Mk z’n“'
n '..x\\ é

L= {ltmimE N

Since this is true for any values of m, % xt\follows that
pis indeterminate, \v
(3. THE FarLacy TEAT EVE‘RY TRIANGLE IS
IsosoELEs, C‘.“

N

Let 4BC be an ambltrarg‘ tnangle We prove that,
necessarily, 4 CONPP, bt .dbraulibrary.org.in

Denote the ] }18 of the sides by the usnal
symbols «, b, e. I‘KD 1s the middle point of BC (Fig. 16),
‘\‘/

. 3
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then, by the sine rule applied to the triangles ADB,

4DC, BD AR
sin BAD ~ sin ADB’
oD AQ

snCAD ™ smADC
Write ZBAD=o, 04D = G, and divide corres

sponding sides of these equations, remembering tha:t’

BD = 0D, thus Smﬂ_“i | ; :‘3

sino ~ &’ N\ ™~

Now subject the base BDC to a sma]k&splacement
into the position B’D'C’ by letting the points B, D, C
‘stide’, as it were, down AB, AD, AO‘{Phe angles or, f are
uncha.nged in this displacement, }‘!ﬂ}ust the variation,
ag is legitimate, so that )

d‘c_BB'—k, 6b_.CO’—-k

where the dlsplacement y ig small, being the same at
both ends of [ the base. bl{ﬂlhe llélﬁ_lB C' ia not in general

Iry.or

parallel to Bt forsuch a dJspla,cement ) _
Take ]ogarit{nms of both sides of the relation

i\ ¢ smﬂ
O, ©
Y b sing’
80 thaty"
'"\'§~

No/

loge — logh = logsin £ —log sin a.

Bifferentiate, remembering that &, § are constant:

dc b
=0
E ok
or E_E ={.
Hence ¢ =

go that 4B = 40,
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{4 Tae FALLACY THAT l/r 1S INDEPENDENT
OF Z.
We prove first a more general result:

)
ewpress @ wn terms of w, y, 2. Then 2 % expressed is 2\
independent of x.

-~

Let 2, y, = be given functions of u, v, w. Evaluate o and

’ne \
ﬁ: is a funetion of z, y, 2, and will be independent of :mf

0 {ox R N
=|=—1] = 0. A7)
8&3‘(8%) m\"

3
By definition of second-order partial dlﬂ"erentmtlon the
left-hand side is H2ee \\“

oxou’ \‘
or, reversing the order of dlﬁ'erentlatlon
Bl N
-_A,_~
Bg}:&n
Now this, by definitiona an:ln i@ ww.dbraulibrary org.in

¢ '{\.' o (ox
) Bu(a:r)

& ox

and O\ = =1,
. x:\“' o
5“\.“
50 th{t\\"' %@_x) =0,

&) o (ox
é — ] =
\\H nce = ( Bu) 0,
and so g-;i is independent of z.

The particular example quoted aboveisa coroflary for
the simplo case:

z=(2u)}, y=20} 2=(2wh
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oz
= 3
Then 3 (2u)

=z
Since g—z is independent of @, it follows that 1/x is

independent of «,

II. Teg COMMENTARY )
O
Farraoy 1. A
The difficulty may best be explained by.j.fsirf’g the
language of differentials. The relation P\
12 = Qo —q? + B2 NN
x.\\w
is perfectly correct, so that, taking differentials on both
sides, P\ 4
rdr = ads,)

For a maximum or mjnimuztﬁ:'{réilue of r, dr must be zero,
and this happens (a not being zero) precisely where
www.dgrau}i%ril‘ﬁ,org,jn

The turning valuesof r arrive at the turning values of x.

This example emphasises the rule that the independent
variable mGst be unrestricted near the turning values of
the depe@dent variable. We might, for example, have
avoﬁi@‘the danger by choosing polar coordinates instead
of Cartesian, giving the relation (with # = »cos )

~O > 2 = 2arcos & —a? + b2,
N/ The equation in differentials is now
rdr = acos 0dr —arsin 646,
80 that dr is zero when

arsin§ = 0,
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Since r cannot be zero {unless a2 = 5?), the condition
for & turning valus is sing = 0,
80 that =0, 6=

This gives the two ends of the diameter through 0.

Farvnaoy 2.

This is akin to the preceding fallacy. The relation ¢ \\x

mlogk+nlogr = (m+n)logp N
18 correct, and the relation in differentials is .m"\"’

d
ndr _(mtmdp N
r P 7))

Thisis perfoctly true. But since » and; pjé;lfe both constant
for the circle, dr and dp are both zgrc;;’SO that no further
deduction can be drawn. O

The real interest of this falla}é:‘y,’however, lies in & more
dotailed exa.mination of ’DI&B Qéqua.ti@nw.dbraulibrary,org‘in

k‘t?t‘?}& = _fpm+n'
-

To make ideas Precise, take the simplest case, when

# =% = 1, so,that'the curve is

2 P = k.
This \ﬁe&ééognise as the ‘podal’ or ‘p—’ equation of
a parjf{,bola whose latus rectum is 4% and whose focus is at
thfz}rigin. To verify this statement, geometrically, let P
& an arbitrary point on the parabola of focus § and

vertex 4, whero 84 = (Fig. 17). If the tangent at P
meets the tangent at the vertox at T, it is known that

(i) 87 is perpendicalar to the tangent,
i}y 2AS8T = +7T8P,
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Hence the triangles AST, 78P are similar, so that
A8 18
ST~ 8P’

or, in the notation of the text,

8o that
A Fig. 17
Eéljft’e the egquation
N P* = kr

x..\‘:’:’Eez’ot only represents (for p = r = k) the eircle of centre the
NN origin and radius k, but also a parabola of focus the origin
A% and latus rectum 4k. The analysis of the text shows that
at & general point of the parabola the radius of curvature

is 2r8/p, '

More generally, an equation hetween + and p of the

form Frap) =0
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gives a cortain curve {(as in standard theory); but it s
also satisfied by the circles whose radii are the roots of the

equaton fir,7) = 0.

These aro the circles through the apses of the eurve, that
is, the points where the tangent is perpendicular to the
radius, (The formula p = rdr/dp requires care at such
points of the curve, since dr and dp are both zero, See

also the proceding fallacy.) N,

O
N
-\
N

Farnacy 3. ’)

The explanation of this fallacy is eompamtively
simple, for it is a case of pure misconduct. Fhe'formula

K7

p .\ v
requires D to be the middle point of BO’ but £ is not the
middle point of B'C’, so the dﬁarentlatlon is noti legiti-
mate—a and £ would have to vary too.

It is essential to checkthat varigtiSRE B REE ¥ 28ia
the conditions on whﬁc}Normulae are based.

¢ sinf

b sing

K
Farnacy 4. ()
This is an e:iample of hypnoms the notation
1,
'S 0% %
: \\\ dxou’ Ouox

Iuresoone into believing that the differentiations can be
| \I'QVersed in order. But 2 (8 )

dx\Cu

is formed on the understanding that the other coefficients
are
g

i), o
dy\ou}’ az(@ ’
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. d fox
Where&s gﬁ a
. . d {2z o {ox
implies 37)(3?:)’ o\5)
The symbol é%(‘a%) \<\

is short for O
> 9

B oun A\
(v, # constant) (v, w constant) ({g\“}
and the abbreviation to

oxdu /{>\«
is unwarranted, \
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CHAPTER VIII

FALLACIES IN INTEGRATION

The fallacies arise chiefly through failure to observe
certain well-known elementary precautions. The results
to which this failure leads may emphasise more vividly

than warnings the need for care. \:\
: -
I. THE FALLACIES ,J}: -
N 3
(1. T FALLACY THAT 0 = 1. ¢
; : o\
Consider the integral \V
= S
Integrate by parts: * R Qg

=f1.(1/3:)dx QO

2(1/z) - .[a::i,"—‘ 1/2%)de
. _ 1+‘£d.’3.~ www.dbraulibrary org.in

@) I
Hence 0 —}

{2 THE FQALLAGY THAT 2 = 1,
Let f (@\be any given function. Then

N [t = [ s [ fwae

\ﬁwe write # = 2y in the first integral on the right, then
j flads = 2 f()dy
= f J(2z)de,

on renaming the varlable

-5 MF
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Suppose, in partieular, that the funetion f(z) is such
that
; 1(22) = 1)

for all values of x. Then

[t =2 st [ peyie

= 0. X \\s
. ~\
Now the relation O
few) = 3 (e) &
.:‘\
is satisfied by the function \(‘\QV
N\
flz) = O
2 &
Hence f de O,e \
1 w AN
8o that Iog.g 0
or N : 2=1,

W db.QthL ary.org.in

{3. Ter F L\bAGY THAT 7 = (..
To prove ﬂz,gxt if f(0) is any function of 0, then

\)

o f”f(ﬁ) cos d0 = 0.
\Siubstltute ’ sinf = ¢
A ,éo that cosGdl = di,
O and write Flsin L8} = g(s).

The limits of integration are 0, 0, since sin 0 = 0 and
sinz = 0. Hence the integral is

f: g{t)dt = 0,
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Corollary. The special case when f() = cos® is of
interest, Then the integral is

Fcoszade - %J”u +cos 26)d0
0 0

= |:§9+1—sin 20]
o
P O\
= 4. \
2 ‘{:.\;
Hence 3 =10, . ‘:5\ “
{4 Tre FALLACY THAT 7 = 0. ',j\&”}
Consider the integral X v
1 adz NW
I= — O
Degs A -\/(l—avgxa) ’x?\
‘1\ '
\8_

- ]:sm—l (aa:)]2 caqﬂ :

=gnla— 311;131{2&; cos 4).
Suppose, in particular, th’a,t wwew glhraulBhery org.in
/\
I = sin~¥{sin 4) — sin~! (sin 24)

—\A\ 24 = - 4.
Nowlet A )\“:; - A=3n
so that {\,;}w 2cosd =
Then\ I ' i
o° -J
O ~o.

Thus 0=—4

: .
and so =0,
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(5. Tz FaLracy vEAT 7 = 2./2.
Consider the integral

Iaf:xf(sinx)dw,

where f(sin z) is any function of sin 2. In accordance with
a gtandard treatment, make the substitution N

=77, Oy
'”g\ o
and then drop dashes. Thus \ ™
£

A\, 3

I= f :{ﬂ-x) f{sin (w—x)}'f{%{wf

3
F] . \
~——f {m—x} f(sinx) dx\\v
1} &/

Hence 2f”wf(sin x) dz o, 3f(sinx) d.
0 . ’.’ o 0

A e
o

Take, in particular, " j.i‘;
Jta)'= usin-1(z),
dbtaulibrapy orgin
so that ww‘ﬂ%{bﬁ\axu) s o) gl rsin,

EN/
Then the relation is
i\\
f”""’ r . E s
P \% 2j 2*sinrdz = ‘H’f z sin zda,
x:\s.l 1] 0
o 2N\V L
.Bq{/ f z*sinadr = 72 —4,
O 0
™3
S\ ]
f zesinxde = 7.,
0
Hence 2Aat—4) = 72,
or 7% == §,

80 that 7= 2,2,
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(6. TuE FALLACcY THAT A CYCLOID HAS ARCHES
OF ZERO LENGTH.

To prove that the length of an arch of the curve

@ ={f+giné, y=1-+4cost
18 zero,

An arch is covered by values of  running from 0 to 27, | 2\
If s denotes length of arc, then the required length is, by A s
standard formula, \)

27 g y \\
- di. M
0 dt (‘n’"
d—_1+cost dy _ —sint, '\"\:"
\:"‘3

@ at
ds

so that ( dt)

Now

Ny

(1+ecost)?+( —sin’ﬁ“;

i

1 +2cost+co$5i+si.n26

=2+2 c0s, t’ ’

=2 (1 + Gos t)

_ &Cosz PR dbraulibrary.org.in
Thus the length is, w\

N 2
w

" is 2eos idt = [sin %t]

NGOV 0

x:\;": = .

R\ II. COMMENTARY

\ EAL Lacy I.

\/  Theerroris brought about through the omission of the
arbitrary constant for indefinite integrals. The anomaly
disappears for definite integration:

If "
IEJ. d_a:,
a &
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then I= [x(l/x)]z —fix(h /2% dx

[P

=047

N\
=F ) \’:\
b . AN\
(Note that [1] = 0 since the function 1 has the value
@ /“."
A\ )
lat = b and also at x = a.) '\C‘
. \\\
O
Farvacy 2. \\ v
The integral ')
1 Ny
[ 7’
RN\

does not exist when f (g:}é‘ 1/z. A reconciliation state-

ment may be effgetod) B¥:55tgFping to the original inte-
gral. Ifis true tl'letifor any value of § greater than zero

o [l i
Pui{n’g\é ~2y in the first integral on the right; it becomes
& [l
i”\‘;}:‘ 1 22 I
<> "~ The relation is thus

'y (M dw J‘ldx

1% s & sa’

_r@
pa’
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The assumption made in the text is that this integral
tends to zero with d—as is indeed plausible, since both
limits then vanish. But we know that

* de ) . .
%3; = [ ng]%a

= logd—log}d

= log ( 3) &)
39 . O
=log2. A0
O
This is in faet the value of A
e D
1& }\‘
so the problem is resolved. O
N
FALLACY 3. SO

The fallacy may be{eiﬁose&bysﬁmidﬂﬁngﬁ:mpur-
ticular example in depail, Let
#\.7
L\ N
o Ef cos?ddf.
0

>
¥ 4

<&
Substitute sing =t,
'S M
850 t\li!w' cos 0df = di.
x..’\fﬁi’en, as an intermediate step,
N
N I= fcos adt

between appropriate limits.
Now cosd is given in terms of { by the relation

cosf = +',/(1—12),
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where the positive sign must be taken for the part (0, ) of

the interval of integration and the negative sign Sor the part
(37, m). Thus

I= +J'4(1—zﬂ)d¢_f¢(1-¢2)d¢,

where the first integration corresponds to 0 < 8 < i
and the second to {7 € @ < 7, so that the limits for ¢ are

|

0,1 and 1, 0, respectively. Hence ) f‘x\'
1 0 O
1=f J(I—tﬂdt——f Jl—@)d o\
: 0 . 1 D ¢
1 \
"y f JO—)de )
0 RS
— %—ﬂ. ..’\ '\~

X
N\ W
L D
.
"

Farvacy 4.

It isimmediately obvio}fs:%}fa,t the ercor must liein the
interpretation of the invgtse sines in the step
B _i.\."\m'_w.d b@u Li bzal'y._or in
gin~ (sin. 4}~ sin~* (sin 24) = 4 — 24,
butitisless eais%}) see exactly what is correct. We have to
examine t};aieipression

N\ %/
AT 1
A > [sin“l {xsin 4 )] ,
\‘,/ 2co8 4
O\
Qfﬂ}ere, to avoid further complications, we suppose that

~Othe lower limit is not greater than the upper, so that

cosd <}
or, for an acute angle,

7
4 = in,

The essential point is that the inverse sine must vary
continuously as x rises from 2cos 4 to 1.
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Draw the curve Sin

T gind

' for values of u between 0 and {Fig. 18). Since, by the

”

\.

assumption, 4 > im,it follows that 24 > &7, asindicated
in the diagram. The values of » for u = 4, 24 are 1,
2cos A, respectively, where 2cosd < 1. The linev =1
cuts the curve at P, where # = 4, and at R, where-

% =7 — A; the line » = 2 ¢08 4 cuts the curve at @, Where’ (M

=24, and at 8, where 4 = 7—24. W
. AN
’\'\
1fsin A --ssmmemmmmomeezs v
L. £ B )
t 'xi\\"
‘ R
2 cos Ay~ B AR e
0724 4 = A 24 \b u
/ www.dbraulibrary.org.in

~\Flg 18

To get the va.rla&)n in the inverse sine as v rises from
2cos 4 to1,ib Is,thSSIble to take either the journey from

8to P, g“’”{g A—(7—24) = 34—,
or the ’?mrney from @ to R, giving

N (m—A)—24 =w—34,
‘b]:m‘b choice of sign being taken here which, by the nature
6f the integral, gives a positive result: that is, 34 —m.
Thus I=34-m,
which venishes when 4 = 1.

The argument on p. 67 wrongly associated P with ¢},
leading to the fallacy.
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Farrnacy 5,
This is very similar to its predecessor and need not be
given in much detail. The point is that

f : (71— ) f{sin (m - )} de

L4
=f (m—2).[sinz. (m—x)] dz N\
1]
= f (m—x)sinwde. K )
0 &
Since 1= f a¥sinxde, ) '\“:‘s
0 O
the correct relation is X ‘\ v
f 22 sin wdx =f (wmx)zlexdx
0 0
. \‘
Farracy 6, N\ %
The error here lies in the false extractmn of the square
root; h

ds\2 -. N

( a) = 4 cos? 3f

WWW. dbm%hbral y.org.in
- = 2cos .
&, tdt
W\ ds

The correct stp s =2cosjt
for the ;\Iiﬁ&fval (0, ), and

& ds
\ ¥4 —_ = = 9 1
\% % 7 cos ¢
ﬁot the interval (s, 277) where the cosine is negative. Thus
§> V 8= f 2 008§ df — J. 2 cos §tdt
| Vi g
[Sln Jt] [Sln 1t]
=1-(-1)

=2,
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CHAPTER IX

FALLACY BY THE CIRCULAR POINTS
AT INFINITY

I. TaE FALLACIES QO

(1. Ter Farracy tEAT THE Four Pornts or )\
InTERsECTION OF Two CoNICS ARE GOLLINLAK\ )
GIVEN: Two conics and a pair of common tangents P«U

and @V touching oné conie at P, @ and the other at¥, V.

The conics meetin four distinet points 4, B, 0 Dyand the
chords of contact PQ, UV meet at B (Fig.\\lf}).

p ,\: » Fig, 19

REQUIR®D: To prove that the line DR contains each of
the J;ﬁree points 4, B, (.

'"QONSTRUGTION To prove that, say, 4 lies on DR,
project B, C into the circular points at infinity. The two
conics then become eireles, with 4, D as common points
and with PU, @V as common tangents (Fig. 20).

PROOF: By symmetry, or by easy independent proof,
the lines PQ, UV, AD are all parallel. That is, PQ meets
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UVinapoint Batinfinity, and DA also passes through R.
Thus 4 lies on DR in the projected figure, and so 4 lies
on DR in the original figure.

In the same way, B and € also lie on DR, and so the
four points 4, B, C, D are collinear.

Fle. 2waw d{t aullbral y.org.in Fig. 21
(2 Tuz FA‘IQ&ACY THAT CONCENTRIC CIRCLES
INVERT INTO CoNcENTRIC CIROLES WITH RE-
SPECT TQ AN ARBITRARY POINT.

Let bX S be two given concentric cireles and O an
arb\ra:ry point, the centre of a cirele = (Fig. 21). Invert
S }nd 8, with respect to .

* The circular points I, J lie on X, and so each inverts
into itself. Moreover, concentric circles touch at I and
at J, and the property of touching is not affected by
inversion. Hence 8, S, invert into cirlces S}, 8} which
also touch at I, J. They are therefore concentric circles.
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II. THE COMMENTARY

Farnacy 1.

This example illustrates the danger, often ignored, of
‘eircular points’ argument when real and complex geo-
metry are confused. The given theorem belongs to com-
plex geometry, where two conics with four distinet points O\
always have four common tangents. Projection transfers
attention to real geomefry, where two circles through tWO
points have only two common tangents.

Call the four tangents of the ecomplex ge\smetry
a, B, v, 8. When B, C are projocted into the citebldr points
at infinity, two of them, say £, v, are pro;ezcted into the
two real tangents of the circles, and if, 1,§\from them that
the collinearity of D, R, 4 is establighed. But when two
other points, say C, 4, are prcue&ted into the circular
points, it is a different pair of t&ngents that ‘appears’ in
the real plane, so that the iitersection of chords of con-
tact is not B but some dther poitit” RAPEAMRIPTHAC &8
have proved is that DB and this point B’ are collinear,
Similarly projectiofhof 4, B into the circular points gives
the collinearity. 6£)D, (' with yet another point R”.

The basis gf the proof is therefore unsound.

".\"
2N\

Fantirey 2.
-~ There are two things that must be kept in mind about
\xﬁverslon as it is normally understood: first, that the
definitions and proofs are based on real geometry, and
do not neeessarily apply to complex; second, that when
extensions are made beyond Euclidean geometry the
correspondence does not remain (1, 1} for all points of
the plane.
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Suppose that P, P’ are inverse points with respect to
the circle X of centre O and radius a. Then

OFP.OF = a2,

¥ a'g
so that OF = op
If P is conceived as moving further and further away
from O along a given radius, then P’ moves nearerand
nearer to O along that radius. Ina geometryin Whlch the
line af infinity is admitted, the ‘points’ of tha,tlme corTe-
spond to the directions of approach to 0. The“ line’ itself
is concentrated by inversion into the pdint’0. Since 7, J
lie on the line at infinity, the ]anguagq\ ‘each inverts into
itself” cannot be accepted Wlthout‘reservatlon

But this is not the whole story—otherwme indeed, we
shounld reach the conclusion) that every circle passed
through 0. The fact that’bhe circular points belong to a
complex geometry mu§h now be considered. In homo-

geneous coﬁi‘i“ﬂmg éﬁ’u]t'll?é'sé HPEHID points
‘\\I(I, i, 0), J(1, —i,0),
each lymgon every circle

\\ 2+ Yyt 4 2gxz+ 2fyz 4+ 2% = 0.

N\
«Ih 50 far as they can be expressed at all in non-homo-
() 'geneous coordinates, they are the points lying ‘at

infinity” along the line
r_ ¥
17 44’

and so the non-homogeneous coordinates of a point P on
OI (where the origin is at 0) can be expressed in the form
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(A, £A}. But such a point i3 at zero distance from O, since
that distance d is given by the formula
@ = (@ — 2+ (4, — )
= (A—0)2+ (i1 —0)2
= A%(1 +12)
=0,

to infinite distance in particular, we come to the con-
clusion that the inverse of every point of the line O 48 abil.

We aro, in fact, attempting to combine real afad‘com-
plex geometries, and have reached a sensitive spot.

\ \ ’ Fig. 22
There, m'a}more satisfactory interpretation in terms of
pure ge}\)metry Lot the tangents at points I, JJ on a given
coniei2 meet at O (Fig. 22). From any point Pin the plane
amﬁther point P’ can be defined as follows:

\ Join OP, and let P’ be the potnt on OP such that P, P’
are conjugate with respect to X, that is, such that the polar
of etther passes through the other.

This defines P’ uniquely for given P, and, when I, J
are the circular points at infinity, the two points are

inverse with respect to X,

Thus if we allow any meaning to distance in general, and\ N,
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The cases of exception are readily seen:

(a) If P lies on 1J, its polar passes through O and so
meets OP at O. Thus all points of the line IJ have their
inverses at O.

(6) If P is on OI, then the polar of P Ppasses through
I and therefore meets OP at I. Thus all poinis of the line\
OI (or OJ) kave their inverses at T {or.J). \

We have therefore broken down the statemeny‘\ @}6)
that I inverts into itself; its inverse is not unique, but

consists of every point on the line OF. 0 N

&
.\:\,&
»
K7
&)
~;‘:g N/
QQ \"

www.dp{hﬂibrat'y.org_in

g\&\. J
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CHAPTER X

SOME ‘LIMIT’ FALLACIES

I. TEE FALLACIES

1. Tex BinomiaL FarLracy,

The binomial theorem states that 4\’\
(a+b)" =a™+na™ b+ "x)
20 st + ...+ nabrpon,
Put n = 0. Then "\\
(@+bP° =1, a®=1, \]\,,

and all terms on the right except the\tWO outside ones
have » as a factor and therefore vams’h Thus

1=140+0+% ~+0+1
= 2. ;.j‘i‘

N

www.dbraulibrary.org.in
(2. Tazr FALLAG}(\THAT ALL NUMBERS ARE

EqQuar. \,
Let m, n best\%o given numbers, and consider the

7\ z+y
Wheﬂe{v&r y is 0, its value is
& -
Ny =
r‘\ W &

\/ or m,

and whenever x is 0, its value ia
Yy
y 2
or .
6 MF

7
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Included in each of these two cases is the particular
case when @ =y =0. Since y = 0, the value of the
function is m; since & = 0, the value of the function is n.
Hence —

('l‘he reader suspicious of the step
m —

=" RON

at @ = 0 should note that, in any case,

Im —=m o\

=0 &

and, similarly, that \
tim ¥ n\)\\\
y-—*ll ¥ \ Q)

(3. THEFURTHERF.@nLLACYTHATALLNUMBERS
ARE EqQuUaL.

Let m, 2 be &D‘EUY‘E?aPu%}Iﬁefﬁ’ and let @ denote their

dlﬂ'erence so tha\ U

Then m\{% —{m—n)z} = nfx?— (m—n)x}.
It is, of course illegitimate to divide this equation by
a? (*m‘ n)a, which is zero, but, alternatively, we may
Rsa*the limiting argument
m_ —(m—n)zx
% mam—p 3:2 —{m-n)z’
Now we know that, if f(2), g () are two functions such

that f(k) = 0, g(k) = 0, but such that g’(k) # 0, where
g'(k) is the differential coefficient, then

m L@ _ (k)
:v—bk 9@ " gk
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Here, & = m—n and
J(®) = g(x) = 2*— (m—n)z,
so0 that Jlx) =g'(®) =22~ (m—n)
and flim—n) =g (m—-n)=m-n.

If m = n, there is nothing to prove. If m # =, then .
m—an # 0, so that g'(m—n) # 0. Hence

2\ ¢
I\
m—n}x _m—n e \
lm — — ) =1. « \/
a—rm—n T "{m n)x m—"n £ N
A 3
m ¢*¢
Thus — =1, A\
i N/
or .m=n 'X:\\w

{4 SomME INFINITE SERIES EWLLAOTES.

A number of somewhat synﬂ:tetlc fallacies (some of
them, though, important in their day) can be obtained
from infinite series. Tho fd‘l*lbwmé, oxa P{jes are reason-

bl bmgf raulibrary.org. in -
ably Q
(i) To PROVE TQM = 0. Write
S‘\)¥1+1—1+1—1+

Then, groupmgm pairs,
\7@ (I-D+(1—D4{1—1)+...

§ =0+0+0+...
R\
s:“” =O.
0"

\\ Also, grouping alternatively in pairs,

=1-1-1)~(1-1)-(1-1)~—...
=1-0-0-0—-...
=1,
Hence 1=10.
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(ii) TO PROVE THAT —1 IS POSITIVE. Write
8=1424+4+8+16+324....
Then §'is positive. Also, multiplying each side by 2,
28 =2+44+8+16+32+...

N

=8-1.
Hence = —1, :\
so that — 1 is positive. y O
(i} To PROVE THAT 0 I8 POSITIVE, (TH&AT I8,
GREATER THAN ZERO). \
Write IS FE NSRRI
e N SRS r A
Then 2p = 1+§-+§7115;1’1|-...
= utol
so that ;@’g":‘v =

But, on subtmc&hnggnmmpmngmg terms,
w— v—Q¢%+@ D+E-H+eG-H+..,

where each{bracketed term is greater than zero. Thus
¥/

W

OK ) 0 is greater than zero.
A

% —v i8 greater than zero,

IT. TeE COMMENTARY
Farracvy 1.

It is easy to dispose of the fallacy in this argument, for
the binomial theorem for positive integers begins at
n = 1 and the proof dees not apply when n = 0. Itisless
easy to see where the extra 1 comes from, and the argu-
ment is worth examining in detail. '
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Since the binomial expansion, when » is not a positive
integer, involves an infinite series, we take, in accordance
with normal practice, the value & = 1 and assume that
|6] < 1. Consider, then, the series

n{n-— 1)b2+n(n—- 1) (n—2)b3+

1+nb+ 21 31 cees
in which the coefficient of B*, where k is a positive &
MEEGET 38— 1) (n—2) ... (= k+ 1) )

-1 (k—2).. ’

This is a function of n and &, which we now exaglﬁie’ onits
own merits, ignoring the restriction for » tohga positive
integer, Write AN
Fn k) = _nan—=1)(rn-2)... (B Sk+1)
HE-DESH.T

Let n approach the value £; thﬁs~
]Jm f(n,,k) =1.

www. dbraulibrary.org.in

Nowlet & approachit};te value 0; thus

K™
]Jm ]ij'(n,k)} Im (1) = 1,
\ n—rk k=0
Altemq{wely, let » approach the value 0; thus
A& '
S

. “NOW let k approach the value 0; thus
\
lim {

lim f{n, .Tc)} = hm (0) = 0.
B0

a0
Both limiting processes finish with # and k zero, but the
different approach gives a result which is 1 in the first
case and ¢ in the second.
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These results may be applied to the particular fallacy.

Forthe first, if n isidentified with the positiveinteger f,
then a coefficient of value 1 is obtained. The subsequent
step & = 0 is meaningless as picking out a term of the
series, but the value 1 persists arithmetically, giving
{since §° = 1} an extra 1 in the expansion. ~

In the second case, however, the immediate identi®
fication of » with zero precludes the possibility of (ah
additional term, and so leads to the correct result;:\ ’

This example is very instructive as affordingasimple
illustration of the way in which the passagé fe limiting
values in two stages may be profoundly éffected by the
order in which the calculations are pe\{f:c;rmed.

Farracy 2. O

This fallacy, like the precedmg one, gives an illustra-
tion of the care that musis‘bja" taken when two limiting
processes are reversed i i order of operation.

A slight charé%?,a x?lt; not.a,tmn allows the use of the

language of Pol: a,r ST A5¥ed &'Bnsider the function

& u = Py

r

S 2yt
In t(,rgs of po]a,r coordinates, with
\\ x=reost, y=raind

’Cséthat &2+ 4% = r2), we have

% =meos f+nsin?d.
The dénouement x=0, y=10

arises when r = 0, but the imiting processes towards that
end depend on & as well as v. The origin z = 0,y = O may
be regarded as approached along & line 6 = «, and the

limit is then .
b1 meosd o+ nsin2a.
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But this depends on a. In particular, it has the value m
when a = 0 and the value = when « = 4=, corresponding
to the two particular limits given in the text.

Farracy 3.
The fallacy itself is rather elementary, but it does serve
to emphasise a point that is sometimes ignored. The

trouble lies in the expression Oy
S\
hm (m n)x ”;’ N/
Fp—n xz —(m—n)z’ .?.( 3

where the limiting process itself is mea.nmgles} sinee x
always has precisely the value m —» and neyer any other.
The subsequent theory therefore co]]{p@es".
Farnacy 4. O

These fallacics are 1ncluded Ghleﬂy because the eol-
lection might appear 1ncomplete without some reference
to infinite series. They are brought abolutila by lgnormg
standard rales goversuncr the convergenc]e of seridy, de-
tails of which mg’fbe found in appropriate text-books.
The series are all non-convergent.

There is sgme interest in a comparison of (i) with the
correspontling correct form for a convergent geries:

Wgﬁé S=1+3+1+g+.
,,géftaha.t 28 = 2+1+3+5+...

_ =2+8.

a
\ 3

Hence 8 =12,
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CHAPTER XI

SOME MISCELLANEOUS HOWLERS

1t is believed that the howlers with which we conclude
this book are all genuine, in the sense that they were
perpetrated innocently in the course of class study orof
examination. Teachers will be familiar with the$ype
of mind producing them, and little comment seems
Iecessary. ~.‘ 3

The first two howlers are so astomshmg that an in-
vestigation is added giving the generaliged theory under
which they become possible. To get thefull benefit from
the others, the reader should tracéthe mistakes to their

source, not being content veith: xmerely locating the

wrong step: for example, i?l?e'zsbé.tement
‘jzé%"‘; 336
in no. 11 1§ (KeUREL L S5 on which the whole
solution turns, apdarises, presumably, from the argument
\562 = 3(6)% = 3(36) = 336.
The auth&z; cannot follow the subsequent step

& 2B+ a?—2? = 2t

.;1'.\\{?*0 solve the equation

(@+3)(2—2z) = 4.

Either x+3=4 x=1,
or 2—x=4 - ax= -2,
Correct.

Commentary. Every quadratic equation can be reduced to
a form leading to this method of solution :

Q!
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The quadratic equation with roots p, ¢ is

(—p){x—g) =0
—pr—qx+pg =0
S l—ptg=14g—2—p—pg+prt+a+qr—a?
=(1+g—x)—p(l+g—2)+a({l+g—~=)
=(+g—=)(l-p+a)
L +g-a)(l-p+r)=1-p+g O
‘. either l14+g—z=1-p+q
T =p, e
or l-p4+az=1-p+q "\\;
L x=gq. o\
2. To find the largest angle of tke’tg'ef:r;cig;ée with stdes 4, 7, 9,
sinC =g

LN

32 1-2857.
) www.dbraulibrary org.in

But .\ 1 =&in 90°,
and \\ -2857 =sin 1636
4 . 1-2857 = sin 106° 36’
o s O =106°36".
Corr ctz\,
Oon@aentary Let OBC be a triangle in which the cmgle at
,Q«w a right angle. Draw the circle with centre B and radius
\'"\; BO + BC to cul the cirele with centre C and radius CO + CB
in A. Then ABC is a triangle whose angle C can be found
by the above method.
Let BC = a, 0C = x, OB = y. Then

and y?—a? = a’

N
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The method gives
sin0 =12 14427
rt+a x+a
If, then, ginf = y—x,
r+a
C =904
On this basis, cos ' = —sinf = £y
r+a {’\
But the more usual formula gives £ ‘; '
PN

a?+ 5% —c? a3+(x+a)3—(y+c&)\\,
2ab 2a(z+a)

—y?+a®+ 2ax — 2ay 2@,—2@; Ty

cos( =

2a(x+a) \2a(x—|—a) z+a

The two formulae therefore a,gree
3. To prove that, if ‘*:‘:‘

— dbrlcnrul‘bﬁa‘yxmwdx

then g ,o;,n(n NI, s =ndmyL
On'’ mtegmtmn by parts’,

O (i
,\;L, =.[ amgin zdx
¢ 0
&

ir i
& = [nx“—l sin a::l - f w1 cos zdx
0 0

= n{fm)r-1— l:n(n —1)am2cos m:l i

0
17
+J.0 nin— 1)z —sinz)dx

= w(imy 1t~ 0 —nn— 17, ,

I In+n(n - I)In—'z = n(%ﬂ')ﬂ_l'
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4. To prove the converse of the theorem of Apollonius, that,
if D i3 a point in the base BC of a triangle ABC such that

AB 1 AC? = 2D A2+ DB2+ DO,

then D is the middle point of BC.
Let ¥ be the middle point of BC. Then, by the theorem
of Apollonius,

AB* L AC? = 2B A4 2EB*

= 2BA*+ ER*+ EC*. AN

Thus 2DA%+ DB+ DC? = 2BA? +EB%+E0<’§Z" '
" DA B4 C) = B4+ B 4 6y
But 2424 BE 4.0 £ 0, \‘f‘ )
otherwise 4, B, C would all be zerq, ;I-Ience
p-5Y

8o that D is the middle pom‘ﬁ of AB.

2\ www. dbraulibrary.org.in

7. w8
)Y
N\

Fig. 23

5. To prove that, if C'D is a chord of w cirele perpendicular
to & diameter AB and meeting it 1n N, then the sum of the
areas of the circles on AN, BN, CN, DN as diamelers is
equal to the area of the whole circle (Fig. 23).
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The sum of the areas is
1m(AN2+ BN24 ON? + DN?)
= 7N A+ B+C-+D).

But 4, B U, D are all points on the circamference of the
big circle. Hence the sum of the areas is equal to the arean
of the whole circle.

8. To prove that, if 0 is @ point inside o 'rectangle A,BC?D
then OA%+0C% = 0B2 40D
If the equation is divided by O, its value is unchanged

Thus L2400 — B DO

Now A=B=(= D\\«

because the figure is a rectangle thus
A2 = 32 03

and so A2+G?s Bryre
but this is equal to \\

www.d bafatelibr ary.org.in

A%+ 0C* = OB* + OD*.

Commentmy\\The fusion of the branches algebra, geo-

metry, ete., into the single subject mathematics is

stron, ly urged by many teachers today. The above
les afford interesting illugtrations of the process.

C?\ To prove that §¥x 4k = 1.

(i) 25x25 =455 — 40 — 1,

(ii) gxf _E_6e
85742 327 B4

(i) (43P (83 —adogt_2.20-1.

(iv) 5/4+5¥8=10=10=1,

(v) glog4+4log8 =5log2+5log? = 1.

=1,
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8. To solve the equation 2o = x—3,

QG =2—3
" (ad)t=2—3
‘. x*: x—3
v, x%'_z% =3
Lat=3
S ax=3x3=9.
Correct.
- _28.48.1677
9. To simplify the expression er et »\: N
g9l1l—-n \\Q(’
2—2n \V
20 \\\
=221 _90n Y
LY
= 911 ,f,}
Correct, W
‘\\ '3

10. To solve the equation g‘ W
11— 3-2)
(5 —3) (7 — 22), —‘z( W gl(auhbral y.org.in
5— 3a:+7-.<\29:_- 11— 6x+3 —x
{3‘- S =14-—T2

AN 2=2
’\\sl

\\./ R R 1.
Correct. '\w

'\w

1. %&ezve the equation
m; w4 (x+4)2 = (x+36)2
\W a? 4 %+ 42 = 2%+ 362
<’ o oxt4al4 16 = a?4 336
|, 2 ta?—a% = 33616
*, xt = 320

- z=380.
Correct.

93

v}«.
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12. To prove that the series

X .
T =y=1)

converges.
Applying the ratio test,
U i1 n
=-——4
%, n+l
-1,
But —-1<1 ,,.zs;\
N\
Soa(-1 1 .
V=D <y \\Q\,
L2 L ‘?;,,
Hence lim Yntt e; }
pih =] ‘u'n x ,V'
so that the series convergea“«
N
13. T'o prove that gz\:‘;“
. 1 1—a3
T ( +x) ( 2 - )
Put % = 1. Thert)
N }K% 2(1-1)
&y 1424241 =
YN I-—
“\\./
’ 2}‘“ - 6= 2X0
¥ ’
}me 0 o0
5=
and mfinity = anything,
then it is equal.
14. To prove that, if
a+b  c+d
b+e dia’

then either a = c or ¢ +b+c+d = 0,
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Each ratio ig

a+b+tetd
btet+d+a
==, 1.
Hence a=e.
If o +£ ¢, then \\
a+b#bte '%.
AN
c+d#=d+a O
L e+btetd #atbietd, ({§}‘z
which is not true unless .
»
at+btetd =0, Q&V
O
K
D
&
</\\ www.dbraulibrary.org.in
\(’\‘\Q
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5@
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